Publications

order by year

A1. Non-adiabatic molecular dynamics: Methodology

  • [DOI] J. Elsner, Y. Xu, E. D. Goldberg, F. Ivanovic, A. Dines, S. Giannini, H. Sirringhaus, and J. Blumberger, “Thermoelectric transport in molecular crystals driven by gradients of thermal electronic disorder,” Sci. Adv., vol. 10, p. eadr1758, 2024.
    [Bibtex]
    @article{Elsner24,
    author = {Elsner, J. and Xu, Y. and Goldberg, E. D. and Ivanovic, F. and Dines, A. and
    Giannini, S. and Sirringhaus, H. and Blumberger, J.},
    title = {{Thermoelectric transport in molecular crystals driven by gradients of thermal electronic disorder}},
    journal = {{Sci. Adv.}},
    volume = {10},
    pages = {eadr1758},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2024},
    type = {Journal Article},
    doi = {10.1126/sciadv.adr1758}
    }
  • [DOI] A. Dines, M. Ellis, and J. Blumberger, “Stabilised Coupled Trajectory Mixed Quantum Classical Algorithm with Improved Energy Conservation: CTMQC-EDI,” J. Chem. Phys., vol. 159, p. 234118, 2023.
    [Bibtex]
    @article{Dines23,
    author = {Dines, A. and Ellis, M. and Blumberger, J. },
    title = {{Stabilised Coupled Trajectory Mixed Quantum Classical Algorithm with Improved Energy Conservation: CTMQC-EDI}},
    journal = {{J. Chem. Phys.}},
    volume = {159},
    pages = {234118},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2023},
    type = {Journal Article},
    doi = {10.1063/5.0183589}
    }
  • [DOI] W. -T. Peng, D. Brey, D. Dell’Angelo, S. Giannini, I. Burghardt, and J. Blumberger, “Exciton Dissociation in a Model Organic Interface: Excitonic State-based Surface Hopping versus Multi-Configurational Time-Dependent Hartree,” J. Phys. Chem. Lett., vol. 13, pp. 7105-7112, 2022.
    [Bibtex]
    @article{Peng22,
    author = {Peng, W.-T. and Brey, D. and Dell'Angelo, D. and Giannini, S. and Burghardt, I. and Blumberger, J.},
    title = {{Exciton Dissociation in a Model Organic Interface: Excitonic State-based Surface Hopping
    versus Multi-Configurational Time-Dependent Hartree}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {13},
    pages = {7105-7112},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2022},
    type = {Journal Article},
    doi = {10.1021/acs.jpclett.2c01928}
    }
  • [DOI] S. Giannini, W. -T. Peng, L. Cupellini, D. Padula, A. Carof, and J. Blumberger, “Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization,” Nat. Commun., vol. 13, p. 2755, 2022.
    [Bibtex]
    @article{Giannini22nc,
    author = {Giannini, S. and Peng, W.-T. and Cupellini, L. and Padula, D. and
    Carof, A. and Blumberger, J.},
    title = {{Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization}},
    journal = {{Nat. Commun.}},
    volume = {13},
    pages = {2755},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2022},
    type = {Journal Article},
    doi = {10.1038/s41467-022-30308-5}
    }
  • [DOI] S. Giannini, A. Carof, M. Ellis, O. G. Ziogos, and J. Blumberger, “Chapter 6 from atomic orbitals to nano-scale charge transport with mixed quantum/classical non-adiabatic dynamics: method, implementation and application,” in Multiscale dynamics simulations: nano and nano-bio systems in complex environments, The royal society of chemistry, 2021, pp. 172-202.
    [Bibtex]
    @InCollection{Giannini21,
    author ="Giannini, Samuele and Carof, Antoine and Ellis, Matthew and Ziogos, Orestis G. and Blumberger, Jochen",
    title ="Chapter 6 From Atomic Orbitals to Nano-scale Charge Transport with Mixed Quantum/Classical Non-adiabatic Dynamics:
    Method, Implementation and Application",
    booktitle ="Multiscale Dynamics Simulations: Nano and Nano-bio Systems in Complex Environments",
    year ="2021",
    pages ="172-202",
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    publisher ="The Royal Society of Chemistry",
    isbn ="978-1-83916-178-0",
    doi ="10.1039/9781839164668-00172",
    url ="http://dx.doi.org/10.1039/9781839164668-00172"
    }
  • [DOI] S. Giannini, O. G. Ziogos, A. Carof, M. Ellis, and J. Blumberger, “Flickering polarons extending over ten nanometers mediate charge transport in high-mobility organic crystals [cover article],” Adv. Theory Simul., vol. 3, p. 2000093, 2020.
    [Bibtex]
    @article{Giannini20,
    author = {Giannini, S. and Ziogos, O. G. and Carof, A. and Ellis, M. and Blumberger, J.},
    title = {{Flickering polarons extending over ten nanometers mediate
    charge transport in high-mobility organic crystals [cover article]}},
    journal = {{Adv. Theory Simul.}},
    volume = {3},
    pages = {2000093},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2020},
    type = {Journal Article},
    doi = {10.1002/adts.202000093}
    }
  • [DOI] A. Carof, S. Giannini, and J. Blumberger, “How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics – beyond the hopping/band paradigm,” Phys. Chem. Chem. Phys., vol. 21, pp. 26368-26386, 2019.
    [Bibtex]
    @article{Carof19,
    author = {Carof, A. and Giannini, S. and Blumberger, J.},
    title = {{How to calculate charge mobility in molecular materials
    from surface hopping non-adiabatic molecular dynamics -
    beyond the hopping/band paradigm}},
    journal = {{Phys. Chem. Chem. Phys.}},
    volume = {21},
    pages = {26368-26386},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2019},
    type = {Journal Article},
    doi = {10.1039/C9CP04770K}
    }
  • [DOI] S. Ghosh, S. Giannini, K. Lively, and J. Blumberger, “Nonadiabatic dynamics with quantum nuclei: Simulating charge transfer with ring polymer surface hopping,” Faraday Discuss., vol. 221, pp. 501-525, 2019.
    [Bibtex]
    @article{Ghosh19,
    author = {Ghosh, S. and Giannini, S. and Lively, K. and Blumberger, J},
    title = {{Nonadiabatic dynamics with quantum nuclei: Simulating charge
    transfer with ring polymer surface hopping}},
    journal = {{Faraday Discuss.}},
    volume = {221},
    pages = {501-525},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2019},
    type = {Journal Article},
    doi = {10.1039/C9FD00046A}
    }
  • [DOI] A. Carof, S. Giannini, and J. Blumberger, “Detailed balance, internal consistency and energy conservation in fragment orbital-based surface hopping,” J. Chem. Phys., vol. 147, p. 214113, 2017.
    [Bibtex]
    @article{Carof17,
    author = {Carof, A. and Giannini, S. and Blumberger, J.},
    title = {{Detailed balance, internal consistency and energy
    conservation in fragment orbital-based surface hopping}},
    journal = {{J. Chem. Phys.}},
    volume = {147},
    pages = {214113},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    year = {2017},
    type = {Journal Article},
    doi = {10.1063/1.5003820}
    }
  • [DOI] S. C. Althorpe, N. Ananth, G. Angulo, R. D. Astumian, V. Beniwal, J. Blumberger, P. G. Bolhuis, B. Ensing, D. R. Glowacki, S. Habershon, S. Hammes-Schiffer, T. J. H. Hele, N. Makri, D. E. Manolopoulos, L. K. McKemmish, M. T. F. III, W. H. Miller, A. J. Mulholland, T. Nekipelova, E. Pollak, J. O. Richardson, M. Richter, P. R. Chowdhury, D. Shalashilin, and R. Szabla, “Non-adiabatic reactions: general discussion,” Faraday Discuss., pp. 311-344, 2016.
    [Bibtex]
    @article{Althorpe16,
    author = {Althorpe, S. C. and Ananth, N. and G. Angulo and Astumian, R. D. and Beniwal, V. and J. Blumberger and Bolhuis, P. G. and Ensing, B. and Glowacki, D. R. and Habershon, S. and Hammes-Schiffer, S. and Hele, T. J. H. and N. Makri and Manolopoulos, D. E. and McKemmish, L. K. and III, T. F. Miller and Miller, W. H. and Mulholland, A. J. and Nekipelova, T. and Pollak, E. and Richardson, J. O. and Richter, M. and Chowdhury, P. R. and Shalashilin, D. and Szabla, R.},
    title = {{Non-adiabatic reactions: general discussion}},
    journal = {{Faraday Discuss.}},
    pages = {311-344},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    DOI = {10.1039/c6fd90078j},
    year = {2016},
    type = {Journal Article},
    doi = {10.1039/C6FD90078J}
    }
  • [DOI] J. Spencer, L. Scalfi, A. Carof, and J. Blumberger, “Confronting Surface Hopping Molecular Dynamics with Marcus Theory for a molecular donor-acceptor system,” Faraday Discuss., vol. 195, pp. 215-236, 2016.
    [Bibtex]
    @article{Spencer16faraday,
    author = {Spencer, J. and Scalfi, L. and Carof, A. and Blumberger, J.},
    title = {{Confronting Surface Hopping Molecular Dynamics
    with Marcus Theory for a molecular donor-acceptor system}},
    journal = {{Faraday Discuss.}},
    volume = {195},
    pages = {215-236},
    year = {2016},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    doi = {10.1039/C6FD00107F}
    }
  • [DOI] J. Spencer, F. Gajdos, and J. Blumberger, “FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials,” J. Chem. Phys., vol. 145, p. 64102, 2016.
    [Bibtex]
    @article{Spencer16jcp,
    author = {Spencer, J. and Gajdos, F. and Blumberger, J.},
    title = {{FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials}},
    journal = {{J. Chem. Phys.}},
    volume = {145},
    pages = {064102},
    year = {2016},
    keywords = {A1. Non-adiabatic molecular dynamics: Methodology},
    doi = {10.1063/1.4960144}
    }

A2. Non-adiabatic molecular dynamics: Applications

  • R. L. Carey, X. Ren, I. E. Jacobs, J. Elsner, S. Schott, E. D. Goldberg, Z. Wang, J. Blumberger, and H. Sirringhaus, “Long spin relaxation times of charge carriers in rubrene molecular crystals due to fast transient localization motion,” under review, 2024.
    [Bibtex]
    @article{Carey24,
    author = {Carey, R. L. and Ren, X. and Jacobs, I. E. and Elsner, J. and Schott, S. and
    Goldberg, E. D. and Wang, Z. and Blumberger, J. and Sirringhaus, H.},
    title = {{Long spin relaxation times of charge carriers in rubrene molecular crystals due to fast transient localization motion}},
    journal = {{under review}},
    volume = {},
    pages = {},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2024},
    type = {Journal Article},
    doi = {}
    }
  • [DOI] L. Stojanovic, S. Giannini, and J. Blumberger, “Exciton Transport in the Nonfullerene Acceptor O‐IDTBR from Nonadiabatic Molecular Dynamics,” J. Chem. Theor. Comput., vol. 20, pp. 6241-6252, 2024.
    [Bibtex]
    @article{Stojanovic24jctc,
    author = {Stojanovic, L. and Giannini, S. and Blumberger, J.},
    title = {{Exciton Transport in the Nonfullerene Acceptor O‐IDTBR from Nonadiabatic Molecular Dynamics}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {20},
    pages = {6241-6252},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2024},
    type = {Journal Article},
    doi = {10.1021/acs.jctc.4c00605}
    }
  • [DOI] L. Stojanovic, J. Coker, S. Giannini, G. Londi, J. Yan, G. D’Avino, D. Beljonne, J. Nelson, and J. Blumberger, “Disorder-induced transition from transient delocalization to charge carrier hopping conduction in the non-fullerene acceptor O-IDTBR,” Phys. Rev. X, vol. 14, p. 21021, 2024.
    [Bibtex]
    @article{Stojanovic24prx,
    author = {Stojanovic, L. and Coker, J. and Giannini, S. and Londi, G. and
    Yan, J. and D’Avino, G. and Beljonne, D. and Nelson, J. and Blumberger, J.},
    title = {{Disorder-induced transition from transient delocalization to charge carrier hopping
    conduction in the non-fullerene acceptor O-IDTBR}},
    journal = {{Phys. Rev. X}},
    volume = {14},
    pages = {021021},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2024},
    type = {Journal Article},
    doi = {10.1103/PhysRevX.14.021021}
    }
  • [DOI] S. Giannini, L. Di Virgilio, M. Bardini, J. Hausch, J. Geuchies, W. Zheng, M. Volpi, J. Elsner, K. Broch, Y. H. Geerts, F. Schreiber, G. Schweicher, H. Wang, J. Blumberger, M. Bonn, and D. and Beljonne, “Transiently delocalized states enhance hole mobility in organic molecular semiconductors,” Nat. Mater., vol. 22, pp. 1361-1369, 2023.
    [Bibtex]
    @article{Giannini23,
    author = {Giannini, S. and Di Virgilio, L. and Bardini, M. and
    Hausch, J. and Geuchies, J. and Zheng, W. and Volpi, M. and
    Elsner, J. and Broch, K. and Geerts, Y. H. and Schreiber, F. and
    Schweicher, G. and Wang, H. and Blumberger, J. and Bonn, M. and
    and Beljonne, D.},
    title = {{Transiently delocalized states enhance hole mobility in organic molecular semiconductors}},
    journal = {{Nat. Mater.}},
    volume = {22},
    pages = {1361-1369},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2023},
    type = {Journal Article},
    doi = {10.1038/s41563-023-01664-4}
    }
  • [DOI] S. Giannini and J. Blumberger, “Charge transport in organic semiconductors: the perspective from non-adiabatic molecular dynamics,” Acc. Chem. Res., vol. 55, p. 819–830, 2022.
    [Bibtex]
    @article{Giannini22acr,
    author = {Giannini, S. and Blumberger, J.},
    title = {Charge transport in organic semiconductors: The perspective from
    non-adiabatic molecular dynamics},
    journal = {{Acc. Chem. Res.}},
    volume = {55},
    pages = {819–830},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2022},
    type = {Journal Article},
    doi = {10.1021/acs.accounts.1c00675}
    }
  • [DOI] M. Ellis, H. Yang, S. Giannini, O. G. Ziogos, and J. Blumberger, “Impact of nanoscale morphology on charge carrier delocalization and mobility in an organic semiconductor,” Adv. Mater., p. 2104852, 2021.
    [Bibtex]
    @article{Ellis21,
    author = {Ellis, M. and Yang, H. and Giannini, S. and Ziogos, O. G. and Blumberger, J.},
    title = {{Impact of nanoscale morphology on charge carrier delocalization and
    mobility in an organic semiconductor}},
    journal = {{Adv. Mater.}},
    volume = {},
    pages = {2104852},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2021},
    type = {Journal Article},
    doi = {10.1002/adma.202104852}
    }
  • [DOI] O. G. Ziogos, I. Blanco, and J. Blumberger, “Ultrathin porphyrin and tetra-indole covalent organic frameworks for organic electronics applications,” J. Chem. Phys., vol. 153, p. 44702, 2020.
    [Bibtex]
    @article{Ziogos20,
    author = {Ziogos, O. G. and Blanco, I and Blumberger, J.},
    title = {{Ultrathin porphyrin and tetra-indole covalent organic frameworks
    for organic electronics applications}},
    journal = {{J. Chem. Phys.}},
    volume = {153},
    pages = {044702},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2020},
    type = {Journal Article},
    doi = {10.1063/5.0010164}
    }
  • [DOI] O. G. Ziogos, S. Giannini, M. Ellis, and J. Blumberger, “Identification of high-mobility tetracene derivatives using non-adiabatic molecular dynamics simulation,” J. Mater. Chem. C, vol. 8, pp. 1054-1064, 2020.
    [Bibtex]
    @article{Ziogos20,
    author = {Ziogos, O. G. and Giannini, S. and Ellis, M. and Blumberger, J.},
    title = {{Identification of high-mobility tetracene derivatives using
    non-adiabatic molecular dynamics simulation}},
    journal = {{J. Mater. Chem. C}},
    volume = {8},
    pages = {1054-1064},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2020},
    type = {Journal Article},
    doi = {10.1039/C9TC05270D}
    }
  • [DOI] S. Giannini, A. Carof, M. Ellis, H. Yang, O. G. Ziogos, S. Ghosh, and J. Blumberger, “Quantum localization and delocalization of charge carriers in organic semiconducting crystals,” Nat. Commun., vol. 10, p. 3843, 2019.
    [Bibtex]
    @article{Giannini19,
    author = {Giannini, S. and Carof, A. and Ellis, M. and Yang, H. and
    Ziogos, O. G. and Ghosh, S. and Blumberger, J.},
    title = {{Quantum localization and delocalization of charge
    carriers in organic semiconducting crystals}},
    journal = {{Nat. Commun.}},
    volume = {10},
    pages = {3843},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2019},
    type = {Journal Article},
    doi = {10.1038/s41467-019-11775-9}
    }
  • S. Giannini, A. Carof, M. Ellis, H. Yang, O. G. Ziogos, S. Ghosh, and J. Blumberger, “Correction to “Quantum localization and delocalization of charge carriers in organic semiconducting crystals”,” Nat. Commun., 2019.
    [Bibtex]
    @article{Giannini19corr,
    author = {Giannini, S. and Carof, A. and Ellis, M. and Yang, H. and
    Ziogos, O. G. and Ghosh, S. and Blumberger, J.},
    title = {{Correction to ``Quantum localization and delocalization of charge
    carriers in organic semiconducting crystals"}},
    journal = {{Nat. Commun.}},
    volume = {},
    pages = {},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2019},
    type = {Journal Article},
    doi = {}
    }
  • [DOI] S. Giannini, A. Carof, and J. Blumberger, “Crossover from hopping to band-like charge transport in an organic semiconductor model: Atomistic non-adiabatic molecular dynamics simulation ,” J. Phys. Chem. Lett, vol. 9, pp. 3116-3123, 2018.
    [Bibtex]
    @article{Giannini18,
    author = {Giannini, S. and Carof, A. and Blumberger, J.},
    title = {{Crossover from hopping to band-like charge transport in an
    organic semiconductor model: Atomistic non-adiabatic molecular dynamics simulation }},
    journal = {{J. Phys. Chem. Lett}},
    volume = {9},
    pages = {3116-3123},
    keywords = {A2. Non-adiabatic molecular dynamics: Applications},
    year = {2018},
    type = {Journal Article},
    doi = {10.1021/acs.jpclett.8b01112}
    }

A3: Machine Learning and Force Fields

  • K. Joll, P. Schienbein, K. M. Rosso, and J. Blumberger, “Mechanism of Fe(II) chemisorption on hematite(001) revealed by reactive neural network potential molecular dynamics,” submitted, 2024.
    [Bibtex]
    @article{Joll24jpcl,
    author = {Joll, K. and Schienbein, P. and Rosso, K. M. and Blumberger, J.},
    title = {{Mechanism of Fe(II) chemisorption on hematite(001) revealed by reactive neural network potential molecular dynamics}},
    journal = {{submitted}},
    volume = {},
    pages = {},
    keywords = {A3: Machine Learning and Force Fields},
    year = {2024},
    type = {Journal Article},
    doi = {}
    }
  • [DOI] P. Schienbein and J. Blumberger, “Data-efficient active learning of ab-initio thermodynamic integration: acidity constants of BiVO4/liquid water,” ChemPhysChem, in press, 2024.
    [Bibtex]
    @article{Schienbein24,
    author = {Schienbein, P. and Blumberger, J.},
    title = {{Data-efficient active learning of ab-initio thermodynamic integration: acidity constants of BiVO4/liquid water}},
    journal = {{ChemPhysChem, in press}},
    volume = {},
    pages = {},
    keywords = {A3: Machine Learning and Force Fields},
    year = {2024},
    type = {Journal Article},
    doi = {10.1002/cphc.202400490}
    }
  • [DOI] K. Joll, P. Schienbein, K. M. Rosso, and J. Blumberger, “Machine learning the electric field response of condensed phase systems using perturbed neural network potentials,” Nat. Commun., vol. 15, p. 8192, 2024.
    [Bibtex]
    @article{Joll24,
    author = {Joll, K. and Schienbein, P. and Rosso, K. M. and Blumberger, J.},
    title = {{Machine learning the electric field response of condensed phase systems using perturbed neural network potentials}},
    journal = {{Nat. Commun.}},
    volume = {15},
    pages = {8192},
    keywords = {A3: Machine Learning and Force Fields},
    year = {2024},
    type = {Journal Article},
    doi = {10.1038/s41467-024-52491-3}
    }
  • [DOI] P. Gütlein, J. Blumberger, and H. Oberhofer, “An iterative fragment scheme for the ACKS2 electronic polarization model: Application to molecular dimers and chains,” J. Chem. Theor. Comput., vol. 16, pp. 5723-5735, 2020.
    [Bibtex]
    @article{Gutlein20,
    author = {G\"utlein, P. and Blumberger, J. and Oberhofer, H.},
    title = {{An iterative fragment scheme for the ACKS2 electronic polarization model:
    Application to molecular dimers and chains}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {16},
    pages = {5723-5735},
    keywords = {A3: Machine Learning and Force Fields},
    year = {2020},
    type = {Journal Article},
    doi = {10.1021/acs.jctc.0c00151}
    }
  • [DOI] P. Gütlein, L. Lang, K. Reuter, J. Blumberger, and H. Oberhofer, “Towards first-principles-level polarization energies in force fields: A Gaussian basis for the atom-condensed Kohn-Sham method,” J. Chem. Theor. Comput., vol. 15, pp. 4516-4525, 2019.
    [Bibtex]
    @article{Gutlein19,
    author = {G\"utlein, P. and Lang, L. and Reuter, K. and Blumberger, J. and
    Oberhofer, H.},
    title = {{Towards first-principles-level polarization energies
    in force fields: A Gaussian basis for the atom-condensed
    Kohn-Sham method}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {15},
    pages = {4516-4525},
    keywords = {A3: Machine Learning and Force Fields},
    year = {2019},
    type = {Journal Article},
    doi = {10.1021/acs.jctc.9b00415}
    }
  • [DOI] Z. Futera and J. Blumberger, “Adsorption of amino acids on gold: assessing the accuracy of the GolP-CHARMM forcefield and parametrization of Au-S bonds,” J. Chem. Theory Comput., vol. 15, pp. 613-624, 2018.
    [Bibtex]
    @article{Futera18,
    author = {Futera, Z. and Blumberger, J.},
    title = {{Adsorption of amino acids on gold: assessing the accuracy
    of the GolP-CHARMM forcefield and parametrization of Au-S bonds}},
    journal = {{J. Chem. Theory Comput.}},
    volume = {15},
    pages = {613-624},
    keywords = {A3: Machine Learning and Force Fields},
    year = {2018},
    type = {Journal Article},
    doi = {10.1021/acs.jctc.8b00992}
    }

B1. Electron Transfer: Methodology

  • [DOI] R. Hafizi, J. Elsner, and J. Blumberger, “Ultrafast Electronic Coupling Estimators: Neural Networks vs Physics-based Approaches,” J. Chem. Theor. Comput., vol. 19, pp. 4232-4242, 2023.
    [Bibtex]
    @article{Hafizi23,
    author = {Hafizi, R. and Elsner, J. and Blumberger, J.},
    title = {{Ultrafast Electronic Coupling Estimators: Neural Networks vs Physics-based Approaches}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {19},
    pages = {4232-4242},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2023},
    type = {Journal Article},
    doi = {10.1021/acs.jctc.3c00184}
    }
  • [DOI] C. S. Ahart, K. M. Rosso, and J. Blumberger, “Implementation and validation of constrained density functional theory forces in the CP2K package,” J. Chem. Theor. Comput., vol. 18, pp. 4438-4446, 2022.
    [Bibtex]
    @article{Ahart22jctc,
    author = {Ahart, C. S. and Rosso, K. M. and Blumberger, J.},
    title = {{Implementation and validation of constrained density functional theory
    forces in the CP2K package}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {18},
    pages = {4438-4446},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2022},
    type = {Journal Article},
    doi = {10.1021/acs.jctc.2c00284}
    }
  • [DOI] O. G. Ziogos and J. Blumberger, “Ultrafast estimation of electronic couplings for electron transfer between pi-conjugated organic molecules. II,” J. Chem. Phys., vol. 155, p. 244110, 2021.
    [Bibtex]
    @article{Ziogos21jcp2,
    author = {Ziogos, O. G. and Blumberger, J.},
    title = {{Ultrafast estimation of electronic couplings for electron transfer
    between pi-conjugated organic molecules. II}},
    journal = {{J. Chem. Phys.}},
    volume = {155},
    pages = {244110},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2021},
    type = {Journal Article},
    doi = {10.1063/5.0076555}
    }
  • [DOI] O. G. Ziogos, A. Kubas, Z. Futera, W. Xie, M. Elstner, and J. Blumberger, “HAB79: A New Molecular Dataset for Benchmarking DFT and DFTB Electronic couplings Against High-Level Ab-initio Calculations,” J. Chem. Phys., vol. 155, p. 234115, 2021.
    [Bibtex]
    @article{Ziogos21jcp1,
    author = {Ziogos, O. G. and Kubas, A. and Futera, Z. and Xie, W. and Elstner, M.
    and Blumberger, J.},
    title = {{HAB79: A New Molecular Dataset for Benchmarking DFT and DFTB Electronic
    couplings Against High-Level Ab-initio Calculations}},
    journal = {{J. Chem. Phys.}},
    volume = {155},
    pages = {234115},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2021},
    type = {Journal Article},
    doi = {10.1063/5.0076010}
    }
  • [DOI] D. Manna, J. Blumberger, J. M. L. Martin, and L. Kronik, “Prediction of electronic couplings for molecular charge transfer using optimally-tuned range-separated hybrid functionals,” Mol. Phys., vol. 116, pp. 2497-2505, 2018.
    [Bibtex]
    @article{Manna18,
    author = {Manna, D. and Blumberger, J. and Martin, J. M. L. and Kronik, L.},
    title = {{Prediction of electronic couplings for molecular charge
    transfer using optimally-tuned range-separated hybrid functionals}},
    journal = {{Mol. Phys.}},
    volume = {116},
    pages = {2497-2505},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2018},
    type = {Journal Article},
    doi = {10.1080/00268976.2018.1489084}
    }
  • [DOI] Z. Futera and J. Blumberger, “Electronic couplings for charge transfer across molecule/metal and molecule/semiconductor interfaces: performance of the projector operator-based diabatization approach,” J. Phys. Chem. C, vol. 121, pp. 19677-19689, 2017.
    [Bibtex]
    @article{Futera17,
    author = {Futera, Z. and Blumberger, J.},
    title = {{Electronic couplings for charge transfer across molecule/metal and molecule/semiconductor interfaces: performance of the projector operator-based diabatization approach}},
    journal = {{J. Phys. Chem. C}},
    volume = {121},
    pages = {19677-19689},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/acs.jpcc.7b06566}
    }
  • [DOI] Z. Futera and J. Blumberger, “Correction to “Electronic couplings for charge transfer across molecule/metal and molecule/semiconductor interfaces: performance of the projector operator-based diabatization approach”,” J. Phys. Chem. C, vol. 126, pp. 3301-3303, 2017.
    [Bibtex]
    @article{Futera17corr,
    author = {Futera, Z. and Blumberger, J.},
    title = {{Correction to ``Electronic couplings for charge transfer across molecule/metal and
    molecule/semiconductor interfaces: performance of the projector operator-based diabatization approach"}},
    journal = {{J. Phys. Chem. C}},
    volume = {126},
    pages = {3301-3303},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/acs.jpcc.2c00450}
    }
  • [DOI] G. F. von Rudorff, R. Jakobsen, K. M. Rosso, and J. Blumberger, “Improving the performance of hybrid functional-based molecular dynamics simulation through screening of Hartree-Fock exchange forces,” J. Chem. Theor. Comput., vol. 13, pp. 2178-2184, 2017.
    [Bibtex]
    @article{Rudorff17,
    author = {Rudorff, G. F. von and Jakobsen, R. and Rosso, K. M and Blumberger, J.},
    title = {{Improving the performance of hybrid functional-based molecular dynamics simulation through screening of Hartree-Fock exchange forces}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {13},
    pages = {2178-2184},
    keywords = {B1. Electron Transfer: Methodology},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/acs.jctc.6b01121}
    }
  • [DOI] N. Gillet, L. Berstis, X. Wu, F. Gajdos, A. Heck, A. de la Lande, J. Blumberger, and M. Elstner, “Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level,” J. Chem. Theor. Comput., vol. 12, pp. 4793-4805, 2016.
    [Bibtex]
    @article{Gillet16,
    author = {Gillet, N. and Berstis, L. and Wu, X. and Gajdos, F. and Heck, A. and Lande, A. de la and Blumberger, J. and Elstner, M.},
    title = {{Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {12},
    pages = {4793-4805},
    keywords = {B1. Electron Transfer: Methodology},
    DOI = {10.1021/acs.jctc.6b00564},
    year = {2016},
    type = {Journal Article}
    }
  • [DOI] A. Kubas, F. Gajdos, A. Heck, H. Oberhofer, M. Elstner, and J. Blumberger, “Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations. II.,” Phys. Chem. Chem. Phys., vol. 17, pp. 14342-14354, 2015.
    [Bibtex]
    @article{Kubas15pccp,
    author = {Kubas, A. and Gajdos, F. and Heck, A. and Oberhofer, H. and Elstner, M. and Blumberger, J.},
    title = {{Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations. II.}},
    journal = {{Phys. Chem. Chem. Phys.}},
    volume = {17},
    pages = {14342-14354},
    year = {2015},
    keywords={B1. Electron Transfer: Methodology},
    doi = {10.1039/C4CP04749D}
    }
  • [DOI] A. Kubas, F. Hoffmann, A. Heck, H. Oberhofer, M. Elstner, and J. Blumberger, “Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations,” J. Chem. Phys., vol. 140, p. 104105, 2014.
    [Bibtex]
    @article{Kubas14jcp,
    author = {Kubas, A. and Hoffmann, F. and Heck, A. and Oberhofer, H. and Elstner, M. and Blumberger, J.},
    title = {{Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations}},
    journal = {{J. Chem. Phys.}},
    volume = {140},
    pages = {104105},
    year = {2014},
    keywords={B1. Electron Transfer: Methodology},
    doi = {10.1063/1.4867077}
    }
  • [DOI] F. Gajdos, S. Valner, F. Hoffmann, J. Spencer, M. Breuer, A. Kubas, M. Dupuis, and J. Blumberger, “Ultrafast estimation of electronic couplings for electron transfer between pi-conjugated organic molecules,” J. Chem. Theory Comput., vol. 10, p. 4653, 2014.
    [Bibtex]
    @article{Gajdos14,
    author = {Gajdos, F. and Valner, S. and Hoffmann, F. and Spencer, J. and Breuer, M. and Kubas, A. and Dupuis, M. and Blumberger, J.},
    title = {{Ultrafast estimation of electronic couplings for electron transfer between pi-conjugated organic molecules}},
    journal = {{J. Chem. Theory Comput.}},
    volume = {10},
    pages = {4653},
    year = {2014},
    keywords={B1. Electron Transfer: Methodology},
    doi = {10.1021/ct500527v}
    }
  • [DOI] H. Oberhofer and J. Blumberger, “Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set,” J. Chem. Phys., vol. 133, p. 244105, 2010.
    [Bibtex]
    @article{Oberhofer10jcp,
    author = {Oberhofer, H. and Blumberger, J.},
    title = {{Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set}},
    journal = {{J. Chem. Phys.}},
    volume = {133},
    pages = {244105},
    year = {2010},
    keywords={B1. Electron Transfer: Methodology},
    doi = {10.1063/1.3507878}
    }
  • [DOI] H. Oberhofer and J. Blumberger, “Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions,” J. Chem. Phys., vol. 131, p. 64101, 2009.
    [Bibtex]
    @article{Oberhofer09,
    author = {Oberhofer, H. and Blumberger, J.},
    title = {{Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions}},
    journal = {{J. Chem. Phys.}},
    volume = {131},
    pages = {064101},
    year = {2009},
    keywords={B1. Electron Transfer: Methodology},
    doi = {10.1063/1.3190169}
    }

B2. Electron Transfer: Oxide Materials

  • [DOI] P. Schienbein and J. Blumberger, “Nanosecond Solvation Dynamics of the Hematite/Liquid Water Interface at Hybrid DFT Accuracy Using Committee Neural Network Potentials,” Phys. Chem. Chem. Phys., vol. 24, pp. 15365-15375, 2022.
    [Bibtex]
    @article{Schienbein22,
    author = {Schienbein, P. and Blumberger, J.},
    title = {{Nanosecond Solvation Dynamics of the Hematite/Liquid Water Interface at
    Hybrid DFT Accuracy Using Committee Neural Network Potentials}},
    journal = {{Phys. Chem. Chem. Phys.}},
    volume = {24},
    pages = {15365-15375},
    keywords = {B2. Electron Transfer: Oxide Materials},
    year = {2022},
    type = {Journal Article},
    doi = {10.1039/D2CP01708C}
    }
  • [DOI] C. S. Ahart, K. M. Rosso, and J. Blumberger, “Electron and Hole Mobilities in Bulk Hematite from Spin-Constrained Density Functional Theory,” J. Am. Chem. Soc., vol. 144, pp. 4623-4632, 2022.
    [Bibtex]
    @article{Ahart22jacs,
    author = {Ahart, C. S. and Rosso, K. M. and Blumberger, J.},
    title = {{Electron and Hole Mobilities in Bulk Hematite from Spin-Constrained
    Density Functional Theory}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {144},
    pages = {4623-4632},
    keywords = {B2. Electron Transfer: Oxide Materials},
    year = {2022},
    type = {Journal Article},
    doi = {10.1021/jacs.1c13507}
    }
  • [DOI] C. S. Ahart, J. Blumberger, and K. M. Rosso, “Polaronic structure of excess electrons and holes for a series of bulk iron oxides,” Phys. Chem. Chem. Phys., vol. 22, pp. 10699-10709, 2020.
    [Bibtex]
    @article{Ahart20,
    author = {Ahart, C. S. and Blumberger, J. and Rosso, K. M.},
    title = {{Polaronic structure of excess electrons and holes for
    a series of bulk iron oxides}},
    journal = {{Phys. Chem. Chem. Phys.}},
    volume = {22},
    pages = {10699-10709},
    keywords = {B2. Electron Transfer: Oxide Materials},
    year = {2020},
    type = {Journal Article},
    doi = {doi: 10.1039/c9cp06482f}
    }
  • [DOI] O. R. Gittus, G. F. von Rudorff, K. M. Rosso, and J. Blumberger, “Acidity constants of the hematite-liquid water interface from ab-initio molecular dynamics,” J. Phys. Chem. Lett, vol. 9, pp. 5574-5582, 2018.
    [Bibtex]
    @article{Gittus18,
    author = {Gittus, O. R. and Rudorff, G. F. von and Rosso, K. M. and Blumberger, J.},
    title = {{Acidity constants of the hematite-liquid water interface
    from ab-initio molecular dynamics}},
    journal = {{J. Phys. Chem. Lett}},
    volume = {9},
    pages = {5574-5582},
    keywords = {B2. Electron Transfer: Oxide Materials},
    year = {2018},
    type = {Journal Article},
    doi = {10.1021/acs.jpclett.8b01870}
    }
  • [DOI] M. E. McBriarty, G. F. von Rudorff, J. E. Stubbs, P. J. Eng, J. Blumberger, and K. M. Rosso, “Structure and dynamics at a complex hematite-water interface,” J. Am. Chem. Soc., vol. 139, pp. 2581-2584, 2017.
    [Bibtex]
    @article{McBriarty17,
    author = {McBriarty, M. E. and Rudorff, G. F. von and Stubbs, J. E. and Eng, P. J. and Blumberger, J. and Rosso, K. M.},
    title = {{Structure and dynamics at a complex hematite-water interface}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {139},
    pages = {2581-2584},
    keywords = {B2. Electron Transfer: Oxide Materials},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/jacs.6b13096}
    }
  • [DOI] G. F. von Rudorff, R. Jakobsen, K. M. Rosso, and J. Blumberger, “Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics,” J. Phys.: Condens. Matter, vol. 28, p. 394001, 2016.
    [Bibtex]
    @article{Rudorff16jp,
    author = {von Rudorff, G. F. and Jakobsen, R. and Rosso, K. M
    and Blumberger, J.},
    title = {{Hematite(001)-liquid water interface from
    hybrid density functional-based molecular dynamics}},
    journal = {{J. Phys.: Condens. Matter}},
    volume = {28},
    pages = {394001},
    year = {2016},
    keywords= {B2. Electron Transfer: Oxide Materials},
    doi = {10.1088/0953-8984/28/39/394001}
    }
  • [DOI] G. F. von Rudorff, R. Jakobsen, K. M. Rosso, and J. Blumberger, “Fast interconversion of hydrogen bonding at the hematite(001)-liquid water interface,” J. Phys. Chem. Lett., vol. 7, pp. 1155-1160, 2016.
    [Bibtex]
    @article{Rudorff16,
    author = {von Rudorff, G. F. and Jakobsen, R. and Rosso, K. M
    and Blumberger, J.},
    title = {{Fast interconversion of hydrogen bonding at the
    hematite(001)-liquid water interface}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {7},
    pages = {1155-1160},
    year = {2016},
    keywords= {B2. Electron Transfer: Oxide Materials},
    doi = {10.1021/acs.jpclett.6b00165}
    }
  • [DOI] K. P. McKenna and J. Blumberger, “First principles modelling of electron tunneling between defects in m-HfO2,” Microelectronic Engineering, vol. 147, pp. 235-238, 2015.
    [Bibtex]
    @article{McKenna15,
    author = {McKenna, K. P. and Blumberger, J.},
    title = {{First principles modelling of electron tunneling between defects in m-HfO2}},
    journal = {{Microelectronic Engineering}},
    volume = {147},
    pages = {235-238},
    year = {2015},
    keywords={B2. Electron Transfer: Oxide Materials},
    doi = {10.1016/j.mee.2015.04.009}
    }
  • [DOI] J. Blumberger and K. McKenna, “Constrained Density Functional Theory Applied to Electron Tunnelling between Defects in MgO,” Phys. Chem. Chem. Phys., vol. 15, p. 2184, 2013.
    [Bibtex]
    @article{Blumberger13,
    author = {Blumberger, J. and McKenna, K.},
    title = {{Constrained Density Functional Theory Applied to Electron Tunnelling between Defects in MgO}},
    journal = {{Phys. Chem. Chem. Phys.}},
    volume = {15},
    pages = {2184},
    year = {2013},
    keywords={B2. Electron Transfer: Oxide Materials},
    doi = {10.1039/C2CP42537H}
    }
  • [DOI] K. McKenna and J. Blumberger, “Crossover from Incoherent to Coherent Electron Tunneling between Defects in MgO,” Phys. Rev. B, vol. 86, p. 245110, 2012.
    [Bibtex]
    @article{McKenna12prb,
    author = {McKenna, K. and Blumberger, J.},
    title = {{Crossover from Incoherent to Coherent Electron Tunneling between Defects in MgO}},
    journal = {{Phys. Rev. B}},
    volume = {86},
    pages = {245110},
    year = {2012},
    keywords={B2. Electron Transfer: Oxide Materials},
    doi = {10.1103/PhysRevB.86.245110}
    }

B3. Electron Transfer: Organic Molecules and Semiconductors

  • [DOI] J. Elsner, S. Giannini, and J. Blumberger, “Mechanoelectric response of single crystal rubrene from ab initio molecular dynamics,” J. Phys. Chem. Lett., vol. 12, pp. 5857-5863, 2021.
    [Bibtex]
    @article{Elsner21,
    author = {Elsner, J. and Giannini, S. and Blumberger, J.},
    title = {{Mechanoelectric response of single crystal rubrene from ab initio
    molecular dynamics}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {12},
    pages = {5857-5863},
    keywords = {B3. Electron Transfer: Organic Molecules and Semiconductors},
    year = {2021},
    type = {Journal Article},
    doi = {10.1021/acs.jpclett.1c01385}
    }
  • [DOI] H. Oberhofer, K. Reuter, and J. Blumberger, “Charge Transport in Molecular Materials: an Assessment of Computational Methods,” Chem. Rev., vol. 117, pp. 10319-10357, 2017.
    [Bibtex]
    @article{Oberhofer17,
    author = {Oberhofer, H. and Reuter, K. and Blumberger, J.},
    title = {{Charge Transport in Molecular Materials: an Assessment of Computational Methods}},
    journal = {{Chem. Rev.}},
    volume = {117},
    pages = {10319-10357},
    keywords = {B3. Electron Transfer: Organic Molecules and Semiconductors},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/acs.chemrev.7b00086}
    }
  • [DOI] H. Yang, F. Gajdos, and J. Blumberger, “Inter-molecular charge transfer parameters, electron-phonon couplings, and the validity of polaron hopping models in organic semiconducting crystals: rubrene, pentacene and C60,” J. Phys. Chem. C, vol. 121, pp. 7689-7696, 2017.
    [Bibtex]
    @article{Yang17,
    author = {Yang, H. and Gajdos, F. and Blumberger, J.},
    title = {{Inter-molecular charge transfer parameters, electron-phonon couplings,
    and the validity of polaron hopping models in organic semiconducting
    crystals: rubrene, pentacene and C60}},
    journal = {{J. Phys. Chem. C}},
    keywords = {B3. Electron Transfer: Organic Molecules and Semiconductors},
    volume = {121},
    pages = {7689-7696},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/acs.jpcc.7b00618}
    }
  • [DOI] F. Gajdos, H. Oberhofer, M. Dupuis, and J. Blumberger, “Correction to “On the inapplicability of electron-hopping models for the organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM)”,” J. Phys. Chem. Lett., vol. 5, p. 2765, 2014.
    [Bibtex]
    @article{Gajdos14corr,
    author = {Gajdos, F. and Oberhofer, H. and Dupuis, M. and Blumberger, J.},
    title = {{Correction to “On the inapplicability of electron-hopping models for the organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM)”}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {5},
    pages = {2765},
    year = {2014},
    keywords={B3. Electron Transfer: Organic Molecules and Semiconductors},
    doi = {10.1021/jz5014455}
    }
  • [DOI] G. Paterno, A. J. Warren, J. Spencer, G. Evans, V. Garcia-Sakai, J. Blumberger, and F. Cacialli, “Micro-focused X-Ray Diffraction Characterization of High-quality [6,6]-Phenyl C61 Butyric acid Methyl Ester Single Crystals Without Solvent Impurities,” J. Mater. Chem. C, vol. 1, p. 5619, 2013.
    [Bibtex]
    @article{Paterno13,
    author = {Paterno, G. and Warren, A. J. and Spencer, J. and Evans, G. and Garcia-Sakai, V. and Blumberger, J. and Cacialli, F.},
    title = {{Micro-focused X-Ray Diffraction Characterization of High-quality [6,6]-Phenyl C61 Butyric acid Methyl Ester Single Crystals Without Solvent Impurities}},
    journal = {{J. Mater. Chem. C}},
    volume = {1},
    pages = {5619},
    year = {2013},
    keywords={B3. Electron Transfer: Organic Molecules and Semiconductors},
    doi = {10.1039/C3TC31075B}
    }
  • [DOI] F. Gajdos, H. Oberhofer, M. Dupuis, and J. Blumberger, “On the Inapplicability of Electron-Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM),” J. Phys. Chem. Lett., vol. 4, p. 1012, 2013.
    [Bibtex]
    @article{Gajdos13,
    author = {Gajdos, F. and Oberhofer, H. and Dupuis, M. and Blumberger, J.},
    title = {{On the Inapplicability of Electron-Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM)}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {4},
    pages = {1012},
    year = {2013},
    keywords={B3. Electron Transfer: Organic Molecules and Semiconductors},
    doi = {10.1021/jz400227c}
    }
  • [DOI] H. Oberhofer and J. Blumberger, “Revisiting electronic couplings and incoherent hopping models for electron transport in crystalline C60 at ambient temperatures,” Phys. Chem. Chem. Phys., vol. 14, p. 13846, 2012.
    [Bibtex]
    @article{Oberhofer12,
    author = {Oberhofer, H. and Blumberger, J.},
    title = {{Revisiting electronic couplings and incoherent hopping models for electron transport in crystalline C60 at ambient temperatures}},
    journal = {{Phys. Chem. Chem. Phys.}},
    volume = {14},
    pages = {13846},
    year = {2012},
    keywords={B3. Electron Transfer: Organic Molecules and Semiconductors},
    doi = {10.1039/C2CP41348E}
    }

B4. Electron Transfer: Proteins

  • [DOI] K. Garg, Z. Futera, X. Wu, Y. Jeong, R. Chiu, V. C. Pisharam, T. Ha, A. C. Aragones, J. H. van Wonderen, J. N. Butt, J. Blumberger, and I. Diez-Perez, “Shallow conductance decay along the heme array of a single tetra-heme protein wire,” Chem. Sci., vol. 15, pp. 12326-12335, 2024.
    [Bibtex]
    @article{Garg24,
    author = {Garg, K. and Futera, Z. and Wu, X. and Jeong, Y. and Chiu, R.
    and Pisharam, V. C. and Ha, T. and Aragones, A. C. and
    van Wonderen, J. H. and Butt, J. N. and Blumberger, J. and Diez-Perez, I.},
    title = {{Shallow conductance decay along the heme array of a single tetra-heme protein wire}},
    journal = {{Chem. Sci.}},
    volume = {15},
    pages = {12326-12335},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2024},
    type = {Journal Article},
    doi = {10.1039/d4sc01366b}
    }
  • [DOI] J. H. van Wonderen, A. Morales-Florez, T. A. Clarke, A. J. Gates, J. Blumberger, Z. Futera, D. J. Richardson, J. N. Butt, and G. R. Moore, “Do multiheme cytochromes containing close-packed heme groups have a band structure formed from the heme pi and pi* orbitals?,” Curr. Opin. Electrochem., vol. 47, p. 101556, 2024.
    [Bibtex]
    @article{vanWonderen24,
    author = {van Wonderen, J. H. and Morales-Florez, A. and Clarke, T. A. and Gates, A. J. and Blumberger, J.
    and Futera, Z. and Richardson, D. J. and Butt, J. N. and Moore, G. R.},
    title = {{Do multiheme cytochromes containing close-packed heme groups have a band structure formed from the heme pi and pi* orbitals?}},
    journal = {{Curr. Opin. Electrochem.}},
    volume = {47},
    pages = {101556},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2024},
    type = {Journal Article},
    doi = {10.1016/j.coelec.2024.101556}
    }
  • [DOI] Z. Futera, X. Wu, and J. Blumberger, “Tunneling-to-Hopping Transition in Multiheme Cytochrome Bioelectronic Junctions,” J. Phys. Chem. Lett., vol. 14, pp. 445-452, 2023.
    [Bibtex]
    @article{Futera23,
    author = {Futera, Z. and Wu, X. and Blumberger, J.},
    title = {{Tunneling-to-Hopping Transition in Multiheme Cytochrome
    Bioelectronic Junctions}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {14},
    pages = {445-452},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2023},
    type = {Journal Article},
    doi = {10.1021/acs.jpclett.2c03361}
    }
  • [DOI] V. A. Dixit, U. S. Murty, P. Bajaj, J. Blumberger, and S. P. de Visser, “Mechanisms of Electron Transfer Rate Modulations in Cytochrome P450 BM3,” J. Phys. Chem. B, vol. 126, pp. 9737-9747, 2022.
    [Bibtex]
    @article{Dixit22,
    author = {Dixit, V. A. and Murty, U. S. and Bajaj, P.
    and Blumberger, J. and de Visser, S. P.},
    title = {{Mechanisms of Electron Transfer Rate Modulations in Cytochrome P450 BM3}},
    journal = {{J. Phys. Chem. B}},
    volume = {126},
    pages = {9737-9747},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2022},
    type = {Journal Article},
    doi = {10.1021/acs.jpcb.2c03967}
    }
  • [DOI] J. H. van Wonderen, K. Adamczyk, X. Wu, X. Jiang, S. E. H. and Piper, C. R. Hall, M. J. Edwards, T. A. Clarke, H. Zhang, L. J. C. Jeuken, I. Sazanovich, M. Towrie, J. Blumberger, S. R. Meech, and J. N. Butt, “Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met ligated heme,” Proc. Nat. Acad. Sci. USA, vol. 118, p. e2107939118, 2021.
    [Bibtex]
    @article{vanWonderen21,
    author = {van Wonderen, J. H. and Adamczyk, K. and Wu, X. and Jiang, X. and
    and Piper, S. E. H. and Hall, C. R. and Edwards, M. J. and Clarke, T. A.
    and Zhang, H. and Jeuken, L. J. C. and
    Sazanovich, I. and Towrie, M. and Blumberger, J.
    and Meech, S. R. and Butt, J. N.},
    title = {{Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome
    nanowire reported by a spectrally unique His/Met ligated heme}},
    journal = {{Proc. Nat. Acad. Sci. USA}},
    volume = {118},
    pages = {e2107939118},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2021},
    type = {Journal Article},
    doi = {10.1073/pnas.2107939118}
    }
  • [DOI] V. A. Dixit, J. Blumberger, and S. K. Vyas, “Electron transfer parameters and rates for Methemoglobin formation in mutant hemoglobin alpha-chains,” Biophys. J., vol. 120, pp. 1-13, 2021.
    [Bibtex]
    @article{Dixit21,
    author = {Dixit, V. A. and Blumberger, J. and Vyas, S. K.},
    title = {{Electron transfer parameters and rates for Methemoglobin formation
    in mutant hemoglobin alpha-chains}},
    journal = {{Biophys. J.}},
    volume = {120},
    pages = {1-13},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2021},
    type = {Journal Article},
    doi = {10.1016/j.bpj.2021.07.007}
    }
  • [DOI] Z. Futera, I. Ide, B. Kayser, K. Garg, X. Jiang, J. H. van Wonderen, J. N. Butt, H. Ishii, I. Pecht, M. Sheves, D. Cahen, and J. Blumberger, “Coherent electron transport across a 3 nm bioelectronic junction made of multi-heme proteins,” J. Phys. Chem. Lett., vol. 11, pp. 9766-9774, 2020.
    [Bibtex]
    @article{Futera20,
    author = {Futera, Z. and Ide, I. and Kayser, B. and Garg, K. and Jiang, X.
    and van Wonderen, J. H. and Butt, J. N. and Ishii, H. and Pecht, I.
    and Sheves, M. and Cahen, D. and Blumberger, J.},
    title = {{Coherent electron transport across a 3 nm bioelectronic
    junction made of multi-heme proteins}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {11},
    pages = {9766-9774},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2020},
    type = {Journal Article},
    doi = {10.1021/acs.jpclett.0c02686}
    }
  • [DOI] X. Jiang, J. H. van Wonderen, J. N. Butt, M. J. Edwards, T. A. Clarke, and J. Blumberger, “Which multi-heme protein complex transfers electrons more efficiently? Comparing MtrCAB from Shewanella with OmcS from Geobacter,” J. Phys. Chem. Lett., vol. 11, pp. 9421-9425, 2020.
    [Bibtex]
    @article{Jiang20,
    author = {Jiang, X. and van Wonderen, J. H. and Butt, J. N. and
    Edwards, M. J. and Clarke, T. A. and Blumberger, J.},
    title = {{Which multi-heme protein complex transfers electrons more
    efficiently? Comparing MtrCAB from Shewanella with OmcS from
    Geobacter}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {11},
    pages = {9421-9425},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2020},
    type = {Journal Article},
    doi = {10.1021/acs.jpclett.0c02842}
    }
  • X. Jiang, J. H. van Wonderen, J. N. Butt, M. J. Edwards, T. A. Clarke, and J. Blumberger, “Correction to “Which multi-heme protein complex transfers electrons more efficiently? Comparing MtrCAB from Shewanella with OmcS from Geobacter”,” J. Phys. Chem. Lett., 2020.
    [Bibtex]
    @article{Jiang20corr,
    author = {Jiang, X. and van Wonderen, J. H. and Butt, J. N. and
    Edwards, M. J. and Clarke, T. A. and Blumberger, J.},
    title = {{Correction to ``Which multi-heme protein complex transfers electrons more
    efficiently? Comparing MtrCAB from Shewanella with OmcS from
    Geobacter"}},
    journal = {{J. Phys. Chem. Lett.}},
    volume = {},
    pages = {},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2020},
    type = {Journal Article},
    doi = {}
    }
  • [DOI] Z. Futera, X. Jiang, and J. Blumberger, “Ergodicity-breaking in thermal biological electron transfer? Cytochrome c revisited II,” J. Phys. Chem. B, vol. 124, pp. 3336-3342, 2020.
    [Bibtex]
    @article{Futera20,
    author = {Futera, Z. and Jiang, X. and Blumberger, J.},
    title = {{Ergodicity-breaking in thermal biological electron
    transfer? Cytochrome c revisited II}},
    journal = {{J. Phys. Chem. B}},
    volume = {124},
    pages = {3336-3342},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2020},
    type = {Journal Article},
    doi = {10.1021/acs.jpcb.0c01414}
    }
  • [DOI] X. Jiang, Z. Futera, and J. Blumberger, “Ergodicity-breaking in thermal biological electron transfer? Cytochrome c revisited,” J. Phys. Chem. B, vol. 123, pp. 7588-7598, 2019.
    [Bibtex]
    @article{Jiang19jpcb,
    author = {Jiang, X. and Futera, Z. and Blumberger, J.},
    title = {{Ergodicity-breaking in thermal biological electron
    transfer? Cytochrome c revisited}},
    journal = {{J. Phys. Chem. B}},
    volume = {123},
    pages = {7588-7598},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2019},
    type = {Journal Article},
    doi = {10.1021/acs.jpcb.9b05253}
    }
  • [DOI] J. van Wonderen, C. Hall, X. Jiang, K. Adamczyk, A. Carof, I. Heisler, S. Piper, T. Clarke, N. Watmough, I. Sazanovich, M. Towrie, S. R. Meech, J. Blumberger, and J. Butt, “Ultra-fast light-driven electron transfer in a Ru(II)tris(bipyridine)-labelled multiheme cytochrome,” J. Am. Chem. Soc., vol. 141, pp. 15190-15200, 2019.
    [Bibtex]
    @article{vanWonderen19,
    author = {van Wonderen, J. and Hall, C. and Jiang, X. and Adamczyk, K.
    and Carof, A. and Heisler, I. and Piper, S. and Clarke, T. and
    Watmough, N. and Sazanovich, I. and Towrie, M. and Meech, S. R.
    and Blumberger, J. and Butt, J.},
    title = {{Ultra-fast light-driven electron transfer in a
    Ru(II)tris(bipyridine)-labelled multiheme cytochrome}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {141},
    pages = {15190-15200},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2019},
    type = {Journal Article},
    doi = {10.1021/jacs.9b06858}
    }
  • [DOI] X. Jiang, B. Burger, F. Gajdos, C. Bortolotti, Z. Futera, M. Breuer, and J. Blumberger, “Kinetics of trifurcated electron flow in the bacterial deca-heme cytochromes MtrC and MtrF,” Proc. Nat. Acad. Sci. USA, vol. 116, pp. 3425-3430, 2019.
    [Bibtex]
    @article{Jiang19pnas,
    author = {Jiang, X. and Burger, B. and Gajdos, F. and Bortolotti, C.
    and Futera, Z. and Breuer, M. and Blumberger, J.},
    title = {{Kinetics of trifurcated electron flow in the bacterial deca-heme
    cytochromes MtrC and MtrF}},
    journal = {{Proc. Nat. Acad. Sci. USA}},
    volume = {116},
    pages = {3425-3430},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2019},
    type = {Journal Article},
    doi = {10.1073/pnas.1818003116}
    }
  • [DOI] X. Jiang, B. Burger, F. Gajdos, C. Bortolotti, Z. Futera, M. Breuer, and J. Blumberger, “Correction to “Kinetics of trifurcated electron flow in the bacterial deca-heme cytochromes MtrC and MtrF”,” Proc. Nat. Acad. Sci. USA, vol. 119, p. e2208173119, 2019.
    [Bibtex]
    @article{Jiang19pnascorr,
    author = {Jiang, X. and Burger, B. and Gajdos, F. and Bortolotti, C.
    and Futera, Z. and Breuer, M. and Blumberger, J.},
    title = {{Correction to ``Kinetics of trifurcated electron flow in the bacterial deca-heme
    cytochromes MtrC and MtrF"}},
    journal = {{Proc. Nat. Acad. Sci. USA}},
    volume = {119},
    pages = {e2208173119},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2019},
    type = {Journal Article},
    doi = {10.1073/pnas.2208173119}
    }
  • [DOI] K. Garg, M. Ghosh, T. Eliash, J. H. van Wonderen, J. N. Butt, L. Shi, X. Jiang, Z. Futera, J. Blumberger, I. Pecht, M. Sheves, and D. Cahen, “Direct evidence for heme-assisted solid-state electronic conduction in multi-heme c-type cytochromes,” Chem. Sci., vol. 9, pp. 7304-7310, 2018.
    [Bibtex]
    @article{Garg18,
    author = {Garg, K and Ghosh, M. and Eliash, T. and van Wonderen, J. H. and
    Butt, J. N. and Shi, L. and Jiang, X. and Futera, Z. and Blumberger, J.
    and Pecht, I. and Sheves, M. and Cahen, D.},
    title = {{Direct evidence for heme-assisted solid-state electronic conduction in
    multi-heme c-type cytochromes}},
    journal = {{Chem. Sci.}},
    volume = {9},
    pages = {7304-7310},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2018},
    type = {Journal Article},
    doi = {10.1039/c8sc01716f}
    }
  • [DOI] J. Blumberger, “Electron transfer and transport through multi-heme proteins: recent progress and future directions,” Curr. Opin. Chem. Biol., vol. 47, pp. 24-31, 2018.
    [Bibtex]
    @article{Blumberger18,
    author = {Blumberger, J.},
    title = {{Electron transfer and transport through multi-heme proteins:
    recent progress and future directions}},
    journal = {{Curr. Opin. Chem. Biol.}},
    volume = {47},
    pages = {24-31},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2018},
    type = {Journal Article},
    doi = {10.1016/j.cbpa.2018.06.021}
    }
  • [DOI] X. Jiang, Z. Futera, M. E. Ali, F. Gajdos, G. F. von Rudorff, A. Carof, M. Breuer, and J. Blumberger, “Cysteine linkages accelerate electron flow through tetra-heme protein STC,” J. Am. Chem. Soc., vol. 139, p. 17237–17240, 2017.
    [Bibtex]
    @article{Jiang17,
    author = {Jiang, X. and Futera, Z. and Ali, Md. E. and Gajdos, F.
    and Rudorff, G. F. von and Carof, A. and Breuer, M.
    and Blumberger, J.},
    title = {{Cysteine linkages accelerate electron flow through tetra-heme
    protein STC}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {139},
    pages = {17237--17240},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/jacs.7b08831}
    }
  • [DOI] X. Jiang, Z. Futera, M. E. Ali, F. Gajdos, G. F. von Rudorff, A. Carof, M. Breuer, and J. Blumberger, “Correction to “Cysteine linkages accelerate electron flow through tetra-heme protein STC”,” J. Am. Chem. Soc., vol. 144, pp. 7010-7012, 2017.
    [Bibtex]
    @article{Jiang17corr,
    author = {Jiang, X. and Futera, Z. and Ali, Md. E. and Gajdos, F.
    and Rudorff, G. F. von and Carof, A. and Breuer, M.
    and Blumberger, J.},
    title = {{Correction to ``Cysteine linkages accelerate electron flow through tetra-heme
    protein STC"}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {144},
    pages = {7010-7012},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2017},
    type = {Journal Article},
    doi = {10.1021/jacs.2c02709}
    }
  • [DOI] M. Breuer, K. M. Rosso, and J. Blumberger, “Redox potentials in the decaheme cytochrome MtrF: Poisson–Boltzmann vs. molecular dynamics simulations,” Proc. Nat. Acad. Sci. USA, vol. 114, p. E10028, 2017.
    [Bibtex]
    @article{Breuer17,
    author = {Breuer, M. and Rosso, K. M. and Blumberger, J.},
    title = {{Redox potentials in the decaheme cytochrome MtrF: Poisson–Boltzmann
    vs. molecular dynamics simulations}},
    journal = {{Proc. Nat. Acad. Sci. USA}},
    volume = {114},
    pages = {E10028},
    keywords = {B4. Electron Transfer: Proteins},
    year = {2017},
    type = {Journal Article},
    doi = {10.1073/pnas.1716813114}
    }
  • [DOI] M. Breuer, K. M. Rosso, and J. Blumberger, “Flavin binding to the deca-heme cytochrome MtrC: Insights from computational molecular simulation,” Biophys. J., vol. 109, pp. 2614-2624, 2015.
    [Bibtex]
    @article{Breuer15bj,
    author = {Breuer, M. and Rosso, K. M. and Blumberger, J.},
    title = {{Flavin binding to the deca-heme cytochrome MtrC: Insights from computational molecular simulation}},
    journal = {{Biophys. J.}},
    volume = {109},
    pages = {2614-2624},
    year = {2015},
    keywords= {B4. Electron Transfer: Proteins},
    doi = {10.1016/j.bpj.2015.10.038}
    }
  • [DOI] J. Blumberger, “Recent advances in the theory and molecular simulation of biological electron transfer reactions,” Chem. Rev., vol. 115, pp. 11191-11238, 2015.
    [Bibtex]
    @article{Blumberger15,
    author = {Blumberger, J.},
    title = {{Recent advances in the theory and molecular simulation of biological electron transfer reactions}},
    journal = {{Chem. Rev.}},
    volume = {115},
    pages = {11191-11238},
    year = {2015},
    keywords= {B4. Electron Transfer: Proteins},
    doi = {10.1021/acs.chemrev.5b00298}
    }
  • [DOI] M. Breuer, K. M. Rosso, J. Blumberger, and J. N. Butt, “Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, Functions and Opportuntities,” J. R. Soc. Interface, vol. 12, p. 20141117, 2015.
    [Bibtex]
    @article{Breuer15,
    author = {Breuer, M. and Rosso, K. M. and Blumberger, J. and Butt, J. N.},
    title = {{Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, Functions and Opportuntities}},
    journal = {{J. R. Soc. Interface}},
    volume = {12},
    pages = {20141117},
    year = {2015},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1098/rsif.2014.1117}
    }
  • [DOI] M. Breuer, K. M. Rosso, and J. Blumberger, “Electron flow in multi-heme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials,” Proc. Nat. Acad. Sci. USA, vol. 111, p. 611, 2014.
    [Bibtex]
    @article{Breuer14,
    author = {Breuer, M. and Rosso, K. M. and Blumberger, J.},
    title = {{Electron flow in multi-heme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials}},
    journal = {{Proc. Nat. Acad. Sci. USA}},
    volume = {111},
    pages = {611},
    year = {2014},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1073/pnas.1316156111}
    }
  • [DOI] V. Tipmanee and J. Blumberger, “Kinetics of the terminal electron transfer step in cytochrome c oxidase,” J. Phys. Chem. B, vol. 116, p. 1876, 2012.
    [Bibtex]
    @article{Tipmanee12,
    author = {Tipmanee, V. and Blumberger, J.},
    title = {{Kinetics of the terminal electron transfer step in cytochrome c oxidase}},
    journal = {{J. Phys. Chem. B}},
    volume = {116},
    pages = {1876},
    year = {2012},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1021/jp209175j}
    }
  • [DOI] M. Breuer, P. Zarzycki, L. Shi, T. A. Clarke, M. Edwards, J. Butt, D. J. Richardson, J. K. Fredrickson, J. M. Zachara, J. Blumberger, and K. M. Rosso, “Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF,” Biochem. Soc. Trans., vol. 40, p. 1198, 2012.
    [Bibtex]
    @article{Breuer12bst,
    author = {Breuer, M. and Zarzycki, P. and Shi, L. and Clarke, T. A. and Edwards, M. and Butt, J. and Richardson, D. J. and Fredrickson, J. K. and Zachara, J. M. and Blumberger, J. and Rosso, K. M. },
    title = {{Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF}},
    journal = {{Biochem. Soc. Trans.}},
    volume = {40},
    pages = {1198},
    year = {2012},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1042/BST20120139}
    }
  • [DOI] M. Breuer, P. Zarzycki, J. Blumberger, and K. M. Rosso, “Thermodynamics of electron flow in the bacterial deca-heme cytochrome MtrF,” J. Am. Chem. Soc., vol. 134, p. 9868, 2012.
    [Bibtex]
    @article{Breuer12jacs,
    author = {Breuer, M. and Zarzycki, P. and Blumberger, J. and Rosso, K. M.},
    title = {{Thermodynamics of electron flow in the bacterial deca-heme cytochrome MtrF}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {134},
    pages = { 9868},
    year = {2012},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1021/ja3027696}
    }
  • [DOI] M. Alfonso-Prieto, H. Oberhofer, M. L. Klein, C. Rovira, and J. Blumberger, “Proton Transfer Drives Protein Radical Formation in Helicobacter pylori Catalase but Not in Penicillium vitale Catalase,” J. Am. Chem. Soc., vol. 133, p. 4285, 2011.
    [Bibtex]
    @article{Alfonso-Prieto11,
    author = {Alfonso-Prieto, M. and Oberhofer, H. and Klein, M. L. and Rovira, C. and Blumberger, J.},
    title = {{Proton Transfer Drives Protein Radical Formation in Helicobacter pylori Catalase but Not in Penicillium vitale Catalase}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {133},
    pages = {4285},
    year = {2011},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1021/ja1110706}
    }
  • [DOI] V. Tipmanee, H. Oberhofer, M. Park, K. S. Kim, and J. Blumberger, “Prediction of Reorganization Free Energies for Biological Electron Transfer: A Comparative Study of Ru-Modified Cytochromes and a 4-Helix Bundle Protein,” J. Am. Chem. Soc., vol. 132, p. 17032, 2010.
    [Bibtex]
    @article{Tipmanee10,
    author = {Tipmanee, V. and Oberhofer, H. and Park, M. and Kim, K. S. and Blumberger, J.},
    title = {{Prediction of Reorganization Free Energies for Biological Electron Transfer: A Comparative Study of Ru-Modified Cytochromes and a 4-Helix Bundle Protein}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {132},
    pages = {17032},
    year = {2010},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1021/ja107876p}
    }
  • [DOI] J. Blumberger, “Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment,” Phys. Chem. Chem. Phys, vol. 10, p. 5651, 2008.
    [Bibtex]
    @article{Blumberger08pccp,
    author = {Blumberger, J.},
    title = {{Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment}},
    journal = {{Phys. Chem. Chem. Phys}},
    volume = {10},
    pages = {5651},
    year = {2008},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1039/B807444E}
    }
  • [DOI] J. Blumberger and M. L. Klein, “Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein,” J. Am. Chem. Soc., vol. 128, p. 13854, 2006.
    [Bibtex]
    @article{Blumberger06jacs,
    author = {Blumberger, J. and Klein, M. L.},
    title = {{Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {128},
    pages = {13854},
    year = {2006},
    keywords={B4. Electron Transfer: Proteins},
    doi = {10.1021/ja063852t}
    }

B5. Electron Transfer: Aqueous solutions

  • [DOI] H. Oberhofer and J. Blumberger, “Insight into the mechanism of the Ru2+ – Ru3+ electron self-exchange reaction from quantitative rate calculations,” Angew. Chem. Int. Ed., vol. 49, p. 3631, 2010.
    [Bibtex]
    @article{Oberhofer10acie,
    author = {Oberhofer, H. and Blumberger, J.},
    title = {{Insight into the mechanism of the Ru2+ - Ru3+ electron self-exchange reaction from quantitative rate calculations}},
    journal = {{Angew. Chem. Int. Ed.}},
    volume = {49},
    pages = {3631},
    year = {2010},
    keywords={B5. Electron Transfer: Aqueous solutions},
    doi = {10.1002/anie.200906455}
    }
  • [DOI] J. Blumberger and G. Lamoureux, “Reorganization free energies and quantum corrections for a model electron self-exchange reaction: comparison of polarizable and non-polarizable solvent models,” Mol. Phys., vol. 106, p. 1597, 2008.
    [Bibtex]
    @article{Blumberger08mp,
    author = {Blumberger, J. and Lamoureux, G.},
    title = {{Reorganization free energies and quantum corrections for a model electron self-exchange reaction: comparison of polarizable and non-polarizable solvent models}},
    journal = {{Mol. Phys.}},
    volume = {106},
    pages = {1597},
    year = {2008},
    keywords={B5. Electron Transfer: Aqueous solutions},
    doi = {10.1080/00268970802220112}
    }

C1. Redox reactions: Methodology

  • [DOI] J. Blumberger, I. Tavernelli, M. L. Klein, and M. Sprik, “Diabatic free energy curves and coordination fluctuations for the aqueous Ag$^+$/Ag$^2+$ redox couple: A biased Born-Oppenheimer molecular dynamics investigation,” J. Chem. Phys., vol. 124, p. 64507, 2006.
    [Bibtex]
    @article{Blumberger06jcp,
    author = {Blumberger, J. and Tavernelli, I. and Klein, M. L. and Sprik, M.},
    title = {{Diabatic free energy curves and coordination fluctuations for the aqueous Ag$^+$/Ag$^2+$ redox couple: A biased Born-Oppenheimer molecular dynamics investigation}},
    journal = {{J. Chem. Phys.}},
    volume = {124},
    pages = {64507},
    year = {2006},
    keywords={C1. Redox reactions: Methodology},
    doi = {10.1063/1.2162881}
    }
  • J. Blumberger and M. Sprik, “Redox Free Energies from Vertical Energy Gaps: Ab initio Molecular Dynamics Implementation,” Springer Lect. Notes Phys., vol. 704, p. 467, 2006.
    [Bibtex]
    @article{Blumberger06lnp,
    author = {Blumberger, J. and Sprik, M.},
    title = {{Redox Free Energies from Vertical Energy Gaps: Ab initio Molecular Dynamics Implementation}},
    journal = {{Springer Lect. Notes Phys.}},
    volume = {704 },
    pages = {467},
    year = {2006},
    keywords={C1. Redox reactions: Methodology}
    }
  • [DOI] J. Blumberger and M. Sprik, “Free energy of oxidation of metal aqua ions by an enforced change of coordination,” J. Phys. Chem. B, vol. 108, p. 6529, 2004.
    [Bibtex]
    @article{Blumberger04jpcb,
    author = {Blumberger, J. and Sprik, M.},
    title = {{Free energy of oxidation of metal aqua ions by an enforced change of coordination}},
    journal = {{J. Phys. Chem. B}},
    volume = {108},
    pages = {6529},
    year = {2004},
    keywords={C1. Redox reactions: Methodology},
    doi = {10.1021/jp036610d}
    }

C2. Redox reactions: Aqueous transition metal ions

  • [DOI] J. Blumberger, M. -P. Gaigeot, M. Sulpizi, and R. Vuilleumier, “Editorial: Frontiers in molecular simulation of solvated ions, molecules and interfaces,” Phys. Chem. Chem. Phys., vol. 22, pp. 10393-10396, 2020.
    [Bibtex]
    @article{Blumberger20,
    author = {Blumberger, J. and Gaigeot, M.-P. and Sulpizi, M and Vuilleumier, R.},
    title = {{Editorial: Frontiers in molecular simulation of solvated ions,
    molecules and interfaces}},
    journal = {{Phys. Chem. Chem. Phys.}},
    volume = {22},
    pages = {10393-10396},
    keywords = {C2. Redox reactions: Aqueous transition metal ions},
    year = {2020},
    type = {Journal Article},
    doi = {10.1039/D0CP90091E}
    }
  • [DOI] D. Yepes, R. Seidel, B. Winter, J. Blumberger, and P. Jaque, “Photoemission Spectra and Density Functional Theory Calculations of 3d Transition Metal Aqua Complexes (Ti-Cu) in Aqueous Solution,” J. Phys. Chem. B, vol. 118, p. 6850, 2014.
    [Bibtex]
    @article{Yepes14,
    author = {Yepes, D. and Seidel, R. and Winter, B. and Blumberger, J. and Jaque, P.},
    title = {{Photoemission Spectra and Density Functional Theory Calculations of 3d Transition Metal Aqua Complexes (Ti-Cu) in Aqueous Solution}},
    journal = {{J. Phys. Chem. B}},
    volume = {118},
    pages = {6850},
    year = {2014},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1021/jp5012389}
    }
  • [DOI] J. Moens, R. Seidel, P. Geerlings, M. Faubel, B. Winter, and J. Blumberger, “Energy Levels and Redox Properties of Aqueous Mn$^2+/3+$ from Photoemission Spectroscopy and Density Functional Molecular Dynamics Simulation,” J. Phys. Chem. B, vol. 114, p. 9173, 2010.
    [Bibtex]
    @article{Moens10,
    author = {Moens, J. and Seidel, R. and Geerlings, P. and Faubel, M. and Winter, B. and Blumberger, J.},
    title = {{Energy Levels and Redox Properties of Aqueous Mn$^2+/3+$ from Photoemission Spectroscopy and Density Functional Molecular Dynamics Simulation}},
    journal = {{J. Phys. Chem. B}},
    volume = {114},
    pages = {9173},
    year = {2010},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1021/jp101527v}
    }
  • [DOI] R. Seidel, M. Faubel, B. Winter, and J. Blumberger, “Single-ion reorganization free energy of aqueous Ru(bpy)$_3^2+/3+$ and Ru(H$_2$O)$_6^2+/3+$ from photoemission spectroscopy and density functional molecular dynamics simulation,” J. Am. Chem. Soc., vol. 131, p. 16127, 2009.
    [Bibtex]
    @article{Seidel09,
    author = {Seidel, R. and Faubel, M. and Winter, B. and Blumberger, J.},
    title = {{Single-ion reorganization free energy of aqueous Ru(bpy)$_3^2+/3+$ and Ru(H$_2$O)$_6^2+/3+$ from photoemission spectroscopy and density functional molecular dynamics simulation}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {131},
    pages = {16127},
    year = {2009},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1021/ja9047834}
    }
  • [DOI] R. Seidel, S. Thurmer, J. Moens, P. Geerlings, J. Blumberger, and B. Winter, “Valence photoemission spectra of aqueous Fe2+/3+ and [Fe(CN)6]4-/3- and their interpretation by DFT calculations,” J. Phys. Chem. B, vol. 115, p. 11671, 2011.
    [Bibtex]
    @article{Seidel11,
    author = {Seidel, R. and S. Thurmer and J. Moens and P. Geerlings
    and J. Blumberger and B. Winter},
    title = {{Valence photoemission spectra of aqueous Fe2+/3+ and [Fe(CN)6]4-/3- and their interpretation by DFT calculations}},
    journal = {{J. Phys. Chem. B}},
    volume = {115},
    pages = {11671},
    year = {2011},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1021/jp203997p}
    }
  • [DOI] J. Blumberger, “Cu+aq/Cu2+aq redox reaction exhibits strong non-linear solvent response due to change in coordination number,” J. Am. Chem. Soc., vol. 130, p. 16065, 2008.
    [Bibtex]
    @article{Blumberger08jacs,
    author = {Blumberger, J.},
    title = {{Cu+aq/Cu2+aq redox reaction exhibits strong non-linear solvent response due to change in coordination number}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {130},
    pages = {16065},
    year = {2008},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1021/ja805471a}
    }
  • [DOI] Y. Tateyama, J. Blumberger, T. Ohno, and M. Sprik, “Free energy calculation of water addition coupled to reduction of aqueous RuO4-,” J. Chem. Phys., vol. 126, p. 204506, 2007.
    [Bibtex]
    @article{Tateyama07,
    author = {Tateyama, Y. and Blumberger, J. and Ohno, T. and Sprik, M.},
    title = {{Free energy calculation of water addition coupled to reduction of aqueous RuO4-}},
    journal = {{J. Chem. Phys.}},
    volume = {126},
    pages = {204506},
    year = {2007},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1063/1.2737047}
    }
  • [DOI] J. Blumberger and M. Sprik, “Quantum versus classical electron transfer energy as reaction coordinate for the aqueous Ru2+/Ru3+ redox reaction,” Theor. Chem. Acc., vol. 115, p. 113, 2006.
    [Bibtex]
    @article{Blumberger06tca,
    author = {Blumberger, J. and Sprik, M.},
    title = {{Quantum versus classical electron transfer energy as reaction coordinate for the aqueous Ru2+/Ru3+ redox reaction}},
    journal = {{Theor. Chem. Acc.}},
    volume = {115},
    pages = {113},
    year = {2006},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1007/s00214-005-0058-0}
    }
  • Y. Tateyama, J. Blumberger, M. Sprik, and I. Tavernelli, “Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes,” J. Chem. Phys., vol. 122, p. 234505, 2005.
    [Bibtex]
    @article{Tateyama05,
    author = {Tateyama, Y. and Blumberger, J. and Sprik, M. and Tavernelli, I.},
    title = {{Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes}},
    journal = {{J. Chem. Phys.}},
    volume = {122},
    pages = {234505},
    year = {2005},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {}
    }
  • [DOI] J. Blumberger, Y. Tateyama, and M. Sprik, “Ab initio molecular dynamics simulation of redox reactions in solution,” Comp. Phys. Comm., vol. 169, p. 256, 2005.
    [Bibtex]
    @article{Blumberger05cpc,
    author = {Blumberger, J. and Tateyama, Y. and Sprik, M.},
    title = {{Ab initio molecular dynamics simulation of redox reactions in solution}},
    journal = {{Comp. Phys. Comm.}},
    volume = {169},
    pages = {256},
    year = {2005},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1016/j.cpc.2005.03.059}
    }
  • [DOI] J. Blumberger and M. Sprik, “Ab initio molecular dynamics simulation of the aqueous Ru2+/Ru3+ redox reaction: The Marcus perspective,” J. Phys. Chem. B, vol. 109, p. 6793, 2005.
    [Bibtex]
    @article{Blumberger05jpcb,
    author = {Blumberger, J. and Sprik, M.},
    title = {{Ab initio molecular dynamics simulation of the aqueous Ru2+/Ru3+ redox reaction: The Marcus perspective}},
    journal = {{J. Phys. Chem. B}},
    volume = {109},
    pages = {6793},
    year = {2005},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1021/jp0455879}
    }
  • [DOI] J. Blumberger, L. Bernasconi, I. Tavernelli, R. Vuilleumier, and M. Sprik, “Electronic structure and solvation of copper and silver ions: A theoretical picture of a model aqueous redox reaction,” J. Am. Chem. Soc., vol. 126, p. 3928, 2004.
    [Bibtex]
    @article{Blumberger04jacs,
    author = {Blumberger, J. and Bernasconi, L. and Tavernelli, I. and Vuilleumier, R. and Sprik, M.},
    title = {{Electronic structure and solvation of copper and silver ions: A theoretical picture of a model aqueous redox reaction}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {126},
    pages = {3928},
    year = {2004},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1021/ja0390754}
    }
  • [DOI] L. Bernasconi, J. Blumberger, M. Sprik, and R. Vuilleumier, “Density functional calculation of the electronic absorption spectrum of Cu+ and Ag+ aqua ions,” J. Chem. Phys., vol. 121, p. 11885, 2004.
    [Bibtex]
    @article{Bernasconi04jcp,
    author = {Bernasconi, L. and Blumberger, J. and Sprik, M. and
    Vuilleumier, R.},
    title = {{Density functional calculation of the electronic absorption spectrum of Cu+ and Ag+ aqua ions}},
    journal = {{J. Chem. Phys.}},
    volume = {121},
    pages = {11885},
    year = {2004},
    keywords={C2. Redox reactions: Aqueous transition metal ions},
    doi = {10.1063/1.1818676}
    }

D1. Ligand diffusion and binding: Methodology

  • [DOI] P. Wang, D. De Sancho, R. B. Best, and J. Blumberger, “Chapter 13: Computation of rate constants for diffusion of small ligands to and from buried protein active sites,” Methods in Enzymology, vol. 578, pp. 299-326, 2016.
    [Bibtex]
    @article{Wang16,
    author = {Wang, P. and De Sancho, D. and Best, R. B.
    and Blumberger, J.},
    title = {{Chapter 13: Computation of rate constants for diffusion
    of small ligands to and from buried protein
    active sites}},
    journal = {{Methods in Enzymology}},
    volume = {578},
    pages = {299-326},
    year = {2016},
    keywords= {D1. Ligand diffusion and binding: Methodology},
    doi = {10.1016/bs.mie.2016.05.039}
    }
  • [DOI] D. De Sancho, A. Kubas, P. Wang, J. Blumberger, and R. B. Best, “Identification of Mutational Hot Spots for Substrate Diffusion: Application to Myoglobin,” J. Chem. Theory Comput., vol. 11, p. 1919, 2015.
    [Bibtex]
    @article{DeSancho15,
    author = {De Sancho, D. and Kubas, A. and Wang, P. and Blumberger, J. and Best, R. B.},
    title = {{Identification of Mutational Hot Spots for
    Substrate Diffusion: Application
    to Myoglobin}},
    journal = {{J. Chem. Theory Comput.}},
    volume = {11},
    pages = {1919},
    year = {2015},
    keywords= {D1. Ligand diffusion and binding: Methodology},
    doi = {10.1021/ct5011455}
    }
  • [DOI] P. Wang, R. B. Best, and J. Blumberger, “Multiscale Simulation Reveals Multiple Pathways for H$_2$ and O$_2$ Transport in a [NiFe]-Hydrogenase,” J. Am. Chem. Soc., vol. 133, p. 3548, 2011.
    [Bibtex]
    @article{Wang11jacs,
    author = {Wang, P. and Best, R. B. and Blumberger, J.},
    title = {{Multiscale Simulation Reveals Multiple Pathways for H$_2$ and O$_2$ Transport in a [NiFe]-Hydrogenase}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {133},
    pages = {3548},
    year = {2011},
    keywords={D1. Ligand diffusion and binding: Methodology},
    doi = {10.1021/ja109712q}
    }

D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin

  • [DOI] A. Kubas, C. Orain, D. De Sancho, L. Saujet, M. Sensi, C. Gauquelin, I. Meynial-Salles, P. Soucaille, H. Bottin, C. Baffert, V. Fourmond, R. B. Best, J. Blumberger, and C. Leger, “Mechanism of O2 diffusion and reduction in FeFe hydrogenase,” Nature Chemistry, vol. 9, pp. 88-95, 2017.
    [Bibtex]
    @article{Kubas17,
    author = {Kubas, A. and Orain, C. and De Sancho, D. and
    Saujet, L. and Sensi, M. and Gauquelin, C. and
    Meynial-Salles, I. and Soucaille, P. and Bottin, H.
    and Baffert, C. and Fourmond, V. and Best, R. B.
    and Blumberger, J. and Leger, C.},
    title = {{Mechanism of O2 diffusion and reduction in FeFe
    hydrogenase}},
    journal = {{Nature Chemistry}},
    volume = {9},
    pages = {88-95},
    year = {2017},
    keywords= {D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1038/nchem.2592}
    }
  • [DOI] V. Fourmond, C. Greco, K. Sybirna, C. Baffert, P. Wang, P. Ezanno, M. Montefiori, M. Bruschi, I. Meynial-Salles, P. Soucaille, J. Blumberger, H. Bottin, D. L. Gioia, and C. Leger, “The oxidative inactivation of FeFe hydrogenase reveals the plasticity of the H-cluster,” Nature Chemistry, vol. 6, p. 336, 2014.
    [Bibtex]
    @article{Fourmond14,
    author = {V. Fourmond and C. Greco and K. Sybirna and C. Baffert and P. Wang and P. Ezanno and M. Montefiori and M. Bruschi and I. Meynial-Salles and P. Soucaille and J. Blumberger and H. Bottin and L. De Gioia and Leger, C.},
    title = {{The oxidative inactivation of FeFe hydrogenase reveals the plasticity of the H-cluster}},
    journal = {{Nature Chemistry}},
    volume = {6},
    pages = {336},
    year = {2014},
    keywords={D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1038/nchem.1892}
    }
  • [DOI] A. Kubas, D. D. Sancho, R. Best, and J. Blumberger, “Aerobic damage of [FeFe] hydrogenases: activation barriers for O2 chemical attachment,” Angew. Chem. Int. Ed., vol. 53, pp. 4081-4084, 2014.
    [Bibtex]
    @article{Kubas14acie,
    author = {Kubas, A. and Sancho, D. De and Best, R. and Blumberger, J.},
    title = {{Aerobic damage of [FeFe] hydrogenases: activation barriers for O2 chemical attachment}},
    journal = {{Angew. Chem. Int. Ed.}},
    volume = {53},
    pages = {4081-4084},
    year = {2014},
    keywords={D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1002/anie.201400534}
    }
  • [DOI] C. Greco, V. Fourmond, C. Baffert, P. Wang, S. Dementin, P. Bertrand, M. Bruschi, J. Blumberger, L. de Gioia, and C. Leger, “Combining experimental and theoretical methods to learn about the reactivity of gas-processing metalloenzymes,” Energy Environ. Sci., vol. 7, p. 3543, 2014.
    [Bibtex]
    @article{Greco14,
    author = {Greco, C. and Fourmond, V. and Baffert, C. and Wang, P. and Dementin, S. and Bertrand, P. and Bruschi, M. and Blumberger, J. and Gioia, L. de and Leger, C.},
    title = {{Combining experimental and theoretical methods to learn about the reactivity of gas-processing metalloenzymes}},
    journal = {{Energy Environ. Sci.}},
    volume = {7},
    pages = {3543},
    year = {2014},
    keywords={D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1039/C4EE01848F}
    }
  • [DOI] P. Wang, M. Bruschi, L. De Gioia, and J. Blumberger, “Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase,” J. Am. Chem. Soc., vol. 135, p. 9493, 2013.
    [Bibtex]
    @article{Wang13,
    author = {Wang, P. and Bruschi, M. and De Gioia, L. and Blumberger, J.},
    title = {{Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase}},
    journal = {{J. Am. Chem. Soc.}},
    volume = {135},
    pages = {9493},
    year = {2013},
    keywords={D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1021/ja403110s}
    }
  • [DOI] P. Wang and J. Blumberger, “Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation,” Proc. Natl. Acad. Sci. USA, vol. 109, p. 6399, 2012.
    [Bibtex]
    @article{Wang12pnas,
    author = {Wang, P. and Blumberger, J.},
    title = {{Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation}},
    journal = {{Proc. Natl. Acad. Sci. USA}},
    volume = {109},
    pages = {6399},
    year = {2012},
    keywords={D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1073/pnas.1121176109}
    }
  • [DOI] P. Wang, R. B. Best, and J. Blumberger, “A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase,” Phys. Chem. Chem. Phys, vol. 13, p. 7708, 2011.
    [Bibtex]
    @article{Wang11pccp,
    author = {Wang, P. and Best, R. B. and Blumberger, J.},
    title = {{A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase}},
    journal = {{Phys. Chem. Chem. Phys}},
    volume = {13},
    pages = {7708},
    year = {2011},
    keywords={D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1039/C0CP02098B}
    }
  • [DOI] P. J. Ballester, M. Mangold, N. I. Howard, M. R. L. Robinson, C. Abell, J. Blumberger, and J. B. O. Mitchell, “Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification,” J. R. Soc. Interface, vol. 9, p. 3196, 2012.
    [Bibtex]
    @article{Ballester12,
    author = {P. J. Ballester and M. Mangold and N. I. Howard and
    R. L. Marchese Robinson and C. Abell and J. Blumberger and
    J. B. O. Mitchell},
    title = {{Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification}},
    journal = {{J. R. Soc. Interface}},
    volume = {9},
    pages = {3196},
    year = {2012},
    keywords={D2. Ligand diffusion and binding: Hydrogenases, CO-dehydrogenase, myoglobin},
    doi = {10.1098/rsif.2012.0569}
    }

E. Chemical Reactions in solution and enzymes

  • [DOI] M. Mangold, L. Rolland, F. Costanzo, M. Sprik, M. Sulpizi, and J. Blumberger, “Absolute pKa values and solvation structure of amino acids from density functional based molecular dynamics simulation,” J. Chem. Theor. Comput., vol. 7, p. 1951, 2011.
    [Bibtex]
    @article{Mangold11,
    author = {Mangold, M. and Rolland, L. and Costanzo, F. and Sprik, M. and Sulpizi, M. and Blumberger, J.},
    title = {{Absolute pKa values and solvation structure of amino acids from density functional based molecular dynamics simulation}},
    journal = {{J. Chem. Theor. Comput.}},
    volume = {7},
    pages = {1951},
    year = {2011},
    keywords={E. Chemical Reactions in solution and enzymes},
    doi = {10.1021/ct100715x}
    }
  • [DOI] L. M. Blomberg, M. Mangold, J. B. O. Mitchell, and J. Blumberger, “Theoretical Study of the Reaction Mechanism of Streptomyces Coelicolor Type II Dehydroquinase,” J. Chem. Theory. Comput., vol. 5, p. 1284, 2009.
    [Bibtex]
    @article{Blomberg09,
    author = {Blomberg, L. M. and Mangold, M. and Mitchell, J. B. O. and Blumberger, J.},
    title = {{Theoretical Study of the Reaction Mechanism of Streptomyces Coelicolor Type II Dehydroquinase}},
    journal = {{J. Chem. Theory. Comput.}},
    volume = {5},
    pages = {1284},
    year = {2009},
    keywords={E. Chemical Reactions in solution and enzymes},
    doi = {10.1021/ct800480d}
    }
  • [DOI] J. Blumberger, G. Lamoureux, and M. L. Klein, “Peptide hydrolysis in thermolysin: Ab-initio QM/MM investigation of the Glu143 assisted water addition mechanism,” J. Chem. Theory. Comput., vol. 3, p. 1837, 2007.
    [Bibtex]
    @article{Blumberger07,
    author = {Blumberger, J. and Lamoureux, G. and Klein, M. L.},
    title = {{Peptide hydrolysis in thermolysin: Ab-initio QM/MM investigation of the Glu143 assisted water addition mechanism}},
    journal = {{J. Chem. Theory. Comput.}},
    volume = {3},
    pages = {1837},
    year = {2007},
    keywords={E. Chemical Reactions in solution and enzymes},
    doi = {10.1021/ct7000792}
    }
  • [DOI] J. Blumberger and M. L. Klein, “Revisiting the free energy profile for the nucleophilic attack of hydroxide on formamide in aqueous solution,” Chem. Phys. Lett., vol. 422, p. 210, 2006.
    [Bibtex]
    @article{Blumberger06cpl,
    author = {Blumberger, J. and Klein, M. L.},
    title = {{Revisiting the free energy profile for the nucleophilic attack of hydroxide on formamide in aqueous solution}},
    journal = {{Chem. Phys. Lett.}},
    volume = {422},
    pages = {210},
    year = {2006},
    keywords={E. Chemical Reactions in solution and enzymes},
    doi = {10.1016/j.cplett.2006.02.035}
    }
  • [DOI] J. Blumberger, B. Ensing, and M. L. Klein, “Formamide hydrolysis in alkaline aqueous solution: Insight from ab initio metadynamics calculations,” Angew. Chem. Int. Ed., vol. 45, p. 2893, 2006.
    [Bibtex]
    @article{Blumberger06acie,
    author = {Blumberger, J. and Ensing, B. and Klein, M. L.},
    title = {{Formamide hydrolysis in alkaline aqueous solution: Insight from ab initio metadynamics calculations}},
    journal = {{Angew. Chem. Int. Ed.}},
    volume = {45},
    pages = {2893},
    year = {2006},
    keywords={E. Chemical Reactions in solution and enzymes},
    doi = {10.1002/anie.200600283}
    }

F. IR Spectroscopy

  • Z. Bacic, Y. Qiu, J. Blumberger, L. Oeltjen, and M. Quack, ,” Faraday Disc. Chem. Soc., vol. 118, p. 431, 2001.
    [Bibtex]
    @article{Bacic01,
    author = {Bacic, Z. and Qiu, Y. and Blumberger, J. and Oeltjen, L. and Quack, M.},
    title = {{}},
    journal = {{Faraday Disc. Chem. Soc.}},
    volume = {118},
    pages = {431},
    year = {2001},
    keywords={F. IR Spectroscopy},
    doi = {}
    }
  • J. Blumberger, T. K. Ha, J. Paff, M. Quack, and G. Seyfang, “Time resolved FTIR detection of IR-multiphoton initiated dissociation of formic acid dimer: Evidence for a dimer with a single strong hydrogen bond,” SASP 2000, XII. Symposium on Atomic and Surface Physics and Related Topics, vol. PR-11, pp. 1-4, 2000.
    [Bibtex]
    @article{Blumberger00,
    author = {Blumberger, J. and Ha, T. K. and Paff, J. and Quack, M. and Seyfang, G.},
    title = {{Time resolved FTIR detection of IR-multiphoton initiated dissociation of formic acid dimer: Evidence for a dimer with a single strong hydrogen bond}},
    journal = {{SASP 2000, XII. Symposium on Atomic and Surface Physics and Related Topics}},
    volume = {PR-11},
    pages = {1-4},
    year = {2000},
    keywords={F. IR Spectroscopy},
    doi = {}
    }

G. Editorials

  • [DOI] J. Blumberger, F. Baletto, and A. Shluger, “1st TYC workshop on energy materials,” Phys. Chem. Chem. Phys, vol. 13, p. 7602, 2011.
    [Bibtex]
    @article{Blumberger11,
    author = {Blumberger, J. and Baletto, F. and Shluger, A.},
    title = {{1st TYC workshop on energy materials}},
    journal = {{Phys. Chem. Chem. Phys}},
    volume = {13},
    pages = {7602},
    year = {2011},
    keywords={G. Editorials},
    doi = {10.1039/C1CP90044G}
    }
  • [DOI] F. Baletto, J. Blumberger, and A. Shluger, “2nd TYC workshop on energy materials,” Phys. Chem. Chem. Phys, vol. 15, p. 4475, 2013.
    [Bibtex]
    @article{Baletto13,
    author = {Baletto, F. and Blumberger, J. and Shluger, A.},
    title = {{2nd TYC workshop on energy materials}},
    journal = {{Phys. Chem. Chem. Phys}},
    volume = {15},
    pages = {4475},
    year = {2013},
    keywords={G. Editorials},
    doi = {10.1039/C2CP90214A}
    }

H. Roadmaps

  • [DOI] J. C. Blakesley, R. S. Bonilla, M. Freitag, A. Ganose, N. Gasparini, P. Kaienburg, G. Koutsourakis, J. D. Major, J. Nelson, N. K. Noel, B. Roose, J. S. Yun, S. Aliwell, P. Altermatt, T. Ameri, V. Andrei, A. Armin, D. Bagnis, J. Baker, H. Beath, M. Bellanger, P. Berrouard, J. Blumberger, S. Boden, H. Bronstein, M. J. Carnie, C. Case, F. A. Castro, Y. Chang, E. Chao, T. M. Clarke, G. Cooke, P. Docampo, K. Durose, J. Durrant, M. Filip, R. H. Friend, J. M. Frost, E. Gibson, A. J. Gillett, P. Goddard, S. Habisreutinger, M. Heeney, A. D. Hendsbee, L. C. Hirst, S. Islam, I. Jayawardena, M. Johnston, M. Kauer, J. Kettle, J. Kim, D. Lamb, D. G. Lidzey, J. Lim, R. Mackenzie, N. Mason, I. McCulloch, K. McKenna, S. Meier, P. Meredith, G. Morse, J. Murphy, C. Nicklin, P. Ortega-Arriaga, T. Osterberg, J. Patel, A. Peaker, M. Riede, M. Rush, J. Ryan, D. O. Scanlon, P. Skabara, F. So, H. J. Snaith, L. Steier, J. Thiesbrummel, A. Troisi, C. Underwood, K. Walzer, T. M. Watson, M. Walls, A. Walsh, L. D. Whalley, B. Winchester, S. Stranks, and R. Hoye, “Roadmap on Established and Emerging Photovoltaics for Sustainable Energy Conversion,” J. Phys.: Energy, 2024.
    [Bibtex]
    @article{Blakesley24,
    author={Blakesley, James C and Bonilla, Ruy Sebastian and Freitag, Marina and Ganose, Alex and Gasparini, Nicola and Kaienburg, Pascal and Koutsourakis, George and Major, Jonathan D and Nelson, Jenny and Noel, Nakita K and Roose, Bart and Yun, Jae Sung and Aliwell, Simon and Altermatt, Pietro and Ameri, Tayebeh and Andrei, Virgil and Armin, Ardalan and Bagnis, Diego and Baker, Jenny and Beath, Hamish and Bellanger, Mathieu and Berrouard, Philippe and Blumberger, Jochen and Boden, Stuart and Bronstein, Hugo and Carnie, Matthew J and Case, Chris and Castro, Fernando A and Chang, Yi-Ming and Chao, Elmer and Clarke, Tracey M and Cooke, Graeme and Docampo, Pablo and Durose, Ken and Durrant, James and Filip, Marina and Friend, Richard H and Frost, Jarvist M and Gibson, Elizabeth and Gillett, Alexander J and Goddard, Pooja and Habisreutinger, Severin and Heeney, Martin and Hendsbee, Arthur D and Hirst, Louise Caroline and Islam, Saiful and Jayawardena, Imalka and Johnston, Michael and Kauer, Matthias and Kettle, Jeff and Kim, Ji-Seon and Lamb, Dan and Lidzey, David G and Lim, Jihoo and Mackenzie, Roderick and Mason, Nigel and McCulloch, Iain and McKenna, Keith and Meier, Sebastian and Meredith, Paul and Morse, Graham and Murphy, John and Nicklin, Chris and Ortega-Arriaga, Paloma and Osterberg, Thomas and Patel, Jay and Peaker, Anthony and Riede, Moritz and Rush, Martyn and Ryan, James and Scanlon, David O and Skabara, Peter and So, Franky and Snaith, Henry J and Steier, Ludmilla and Thiesbrummel, Jarla and Troisi, Alessandro and Underwood, Craig and Walzer, Karsten and Watson, Trystan M and Walls, Michael and Walsh, Aron and Whalley, Lucy Dorothy and Winchester, Benedict and Stranks, Sam and Hoye, Robert},
    title = {{Roadmap on Established and Emerging Photovoltaics for Sustainable Energy Conversion}},
    journal = {{J. Phys.: Energy}},
    volume = { },
    pages = { },
    keywords = {H. Roadmaps},
    year = {2024},
    type = {Journal Article},
    url={http://iopscience.iop.org/article/10.1088/2515-7655/ad7404},
    doi = {10.1088/2515-7655/ad7404}
    }